Fixing an error in Caponnetto and de Vito (2007)

نویسنده

  • Dougal J. Sutherland
چکیده

The seminal paper of Caponnetto and de Vito (2007) provides minimax-optimal rates for kernel ridge regression in a very general setting. Its proof, however, contains an error in its bound on the effective dimensionality. In this note, we explain the mistake, provide a correct bound, and show that the main theorem remains true. The mistake lies in Proposition 3’s bound on the effective dimensionality N (λ), particularly its dependence on the parameters of the family of distributions b and β. We discuss the mistake and provide a correct bound in Section 1. Its dependence on the regularization parameter λ, however, was correct, so the proof of Theorem 1 carries through with the exact same strategy. The proof was written in such a way, though, that it is not immediately obvious that it still holds for the corrected bound; we thus provide a more detailed explication of the proof, showing it is still valid. This note will make little sense without a copy of the original paper at hand. Numbered theorems and equation references always refer to those of Caponnetto and de Vito (2007); equations in this document are labeled alphabetically. A trivial correction First, we note a tiny mistake: Theorem 4 needs Cη = 96 log 2 6 η , rather than 32 log 2 6 η , because the last line of its proof dropped the constant 3 in front of S1(λ, z) and S2(λ, z) in (36). 1 Bound on the effective dimensionality Part of Proposition 3 is the claim that for p ∈ P(b, c), with c ∈ [1, 2] and b ∈ (1,∞), N (λ) ≤ βb b− 1 λ− 1 b . (a) The argument starts like this: N (λ) = Tr [ (T + λI)−1T ]

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Model Selection for Regularized Least-Squares Algorithm in Learning Theory

We investigate the problem of model selection for learning algorithms depending on a continuous parameter. We propose a model selection procedure based on a worst case analysis and data-independent choice of the parameter. For regularized least-squares algorithm we bound the generalization error of the solution by a quantity depending on few known constants and we show that the corresponding mo...

متن کامل

Learning, Regularization and Ill-Posed Inverse Problems

Many works have shown that strong connections relate learning from examples to regularization techniques for ill-posed inverse problems. Nevertheless by now there was no formal evidence neither that learning from examples could be seen as an inverse problem nor that theoretical results in learning theory could be independently derived using tools from regularization theory. In this paper we pro...

متن کامل

Are Loss Functions All the Same?

In this letter, we investigate the impact of choosing different loss functions from the viewpoint of statistical learning theory. We introduce a convexity assumption, which is met by all loss functions commonly used in the literature, and study how the bound on the estimation error changes with the loss. We also derive a general result on the minimizer of the expected risk for a convex loss fun...

متن کامل

Learning from Examples as an Inverse Problem

Many works related learning from examples to regularization techniques for inverse problems, emphasizing the strong algorithmic and conceptual analogy of certain learning algorithms with regularization algorithms. In particular it is well known that regularization schemes such as Tikhonov regularization can be effectively used in the context of learning and are closely related to algorithms suc...

متن کامل

Estimating the approximation error when fixing unessential factors in global sensitivity analysis

One of the major settings of global sensitivity analysis is that of fixing non-influential factors, in order to reduce the dimensionality of a model. However, this is often done without knowing the magnitude of the approximation error being produced. This paper presents a new theorem for the estimation of the average approximation error generated when fixing a group of non-influential factors. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1702.02982  شماره 

صفحات  -

تاریخ انتشار 2017